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General set and graph theory have been applied to formalize the process of recognition of a set of 
electron density maxima in Fourier maps as a chemical (sub)structure in order to avoid human inter- 
vention. The information content of F and E maps is discussed in relation to the formulation of hy- 
potheses on the labelling function relating the valued chemical structure graph to the non-valued Fourier 
graph. Various combinatorial methods based on graph theory, which find application in chemical 
structure information retrieval techniques, are indicated to establish relations between (sub)structures, 
leading to one-to-one mapping of the Fourier maxima to specific entities of the known organochemical 
structure. 

1. Introduction 

Recent theoretical advances (e.g. direct methods), pro- 
gress in software techniques (e.g. fast Fourier meth- 
ods) and improved accessibility to hardware features 
(e.g. computer graphics systems) have provided most 
crystallographic laboratories with the essential tools 
for modern crystal structure determination. In this 
process, human intervention is still normal in the inter- 
pretation of Fourier (F) and E maps; actually, the 
latter analyses are in a vague and relatively unsyste- 
matic state. In manual topological structure analysis, 
old-fashioned shadowing techniques have gradually 
been replaced by pictorial pattern recognition methods 
and prints or drawings expressing interconnexions 
between true and false maxima. The crystallographer 
uses intuitively the concept of similarity among struc- 
tures in the survey of F maps, i.e. in the attempts to 
relate structure and electron density maxima. It appears 
desirable now to minimize such human effort and in- 
tuition by development of algebraic solutions to the 
F map. We describe here the principles of correlation 
of a stored computer version of the topological chemi- 
cal structure with the stored electron density map. 
Obviously, such procedures are of great help especially 
for multiple Fourier calculations (cf. direct methods) 
and when automatic crystal structure determination 
is being pursued. 

To achieve the goal, F maps and chemical structures 
are to be described in a form amenable to further 
elaboration. Graphs and Boolean matrices are the best 
mathematical tools for this purpose. For direct in- 
spection, Fourier patterns represented in matrix form 
offer little advantage over a graphic representation. 
However, matrices may be arranged according to 
certain principles so as to reveal the presence of sub- 
groupings. Also, matrix algebra allows analysis of the 
structure of a set, e.g. by operations of squaring and 
cubing. In the former case, each entry in the resulting 
matrix stands for the number of two-step connexions 
between the specified two members of the group. 
Diagonal entries indicate the number of two-step con- 

nexions existing from a node to itself, thus the coor- 
dination number. Elements in the cubed matrix indi- 
cate walks of length three between any two nodes, etc. 
It is thus possible to obtain such information as which 
atoms are indirectly connected to each other, how 
indirect is this connexion, which nodes are connected 
to the greatest number of nodes, etc. Being able to 
handle efficiently such aspects of group structure should 
make it feasible to handle more adequately the inter- 
pretation of F maps. 

2. General considerations 

2.1. Crystallography and mathernatics 
Whereas the use of mathematics in crystallography 

has been oriented mainly towards the development of 
theory and generation of models which account for 
processing of experimentally observed data, little ef- 
fort has been put into formalizing the concept of 
structure. Modern approaches of mathematics make 
extensive use of algebraic structures, ordered sets, 
graph theory and topological spaces (Bourbaki, 1966). 
Graph theory and combinatorial analysis are, find- 
ing increasing applications as a tool of analysis in 
widely differing areas of science and technology 
(Seshu & Reed, 1961; Flament, 1963; Sussenguth, 
1964), have found wide use also in strictly chemical 
problems (Balaban, 1967; Lederberg et aL, 1969; 
Rouvray, 1971), but much less in X-ray crystallog- 
raphy. A systematic exposition of properties of net- 
works and of relevant techniques may lead to the con- 
struction of networks capable of expressing mathe- 
matical relations in a new fashion. Network geometry 
allows for carrying out automatic calculations in any 
problem that can be represented in this manner. It 
is our intention to develop a mathematical concept 
of chemical structure identification, confined and pre- 
judiced as little as possible by our experience. The for- 
malism is based on the algebraic theory of sets and 
relations and can be used as a model for the defini- 
tion of some characteristic properties of crystallo- 
graphic reality. 
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2.2. The combinatorial Fourier problem 
The determination of the nature of the maxima in 

electron density maps may intuitively be considered as 
a combinatorial problem. A formal treatment of this 
subject is given below. Here we just wish to observe 
that experience with such problems (Unger, 1964) 
teaches that a broad set-up of testing a variety of in- 
complete routes is often more efficient than an ex- 
haustive approach in depth. But even such simple 
'breadth'  search is usually computationally expensive 
and prohibitive for big structures with high branching 
ratios. In fact, consider the critical permutation pro- 
blem. Suppose that the F map consists of m peaks and 
the molecule of n atoms (m<n). Disregarding the 
structure (i.e. neighbourhood relations), the true atom- 
by-atom correspondence is one out of 

n! 
(~,)m!- (1) 

(n -m) !  

sets. Direct comparison between all possible subsets 
of equal order of the atoms of the chemical structure 
and the Fourier maxima would therefore be a tremen- 
dous task if we set aside the concept of 'structure' and 
especially when we consider that (1) diverges rapidly 
both with the increasing number of atoms n of the 
molecule under investigation and the growth of the 
F map. 

If we discard the atom-by-atom correspondence and 
impose the sole condition that Fourier peaks must be 
mapped onto the appropriate atomic species (this re- 
quirement corresponds to the attribution of the cor- 
rectfpotent ia ls) ,  we need to perform 

Z (n(~,) t l m! (2) l-I(m~)! 

permutations (cf. also Feller, 1968), where n~ is the 
number of atoms of kind i in the molecule and the 
sum extends over all the partitions {m~} of m in subsets 
ml such that ~m~ = m, m~ _< n~ and ~ni = n. The numer- 
ator is in fact that of a hypergeometric distribution 
and expresses the number of ways to extract m~<ni 
objects once fixed {m~}, such that ~,m~=m; however, 
when these are considered to be the same, as is the 
case when we do not take into account the fact that 
the atom i may not belong to the substructure re- 
presented in the F map, the numerator equals 1. 

We observe that (1) is insensitive to whether atoms 
are all of the same kind or not, whereas (2) equals the 

numera to r (  n ) for an equal-atom structure and 
g ~ 

a p -  
\ / 

proaches 1 for m--~ n. Although this may seem to be 
an obvious result, (2) has the property that the better 
the quality of the F map, the easier the matching pro- 
cess; this is different from the procedure according 
to (1), which determines the atom-by-atom correspon- 
dence and where n! checks are necessary for m - +  n. 

Let us now consider an addendum of (2) and suppose 
we know the number m~ of atoms in set i of the F map 
on the basis of peak heights (in this case the sum re- 

duces to one term). When m ~ n and m,--+ n, the 
formula reduces to 

n! n! 
(3) 

nl!nz!" " - Yl(n~!)" 

But (2) also reduces to nl/I-l(n~!) when m - +  n because 
if n = m  and ~n~ =n,  the only partition {m~} of m such 
that mi<n~ is {n~}. This means that with a perfect F 
map (all and only true peaks are present), disregarding 
structural features such as bonds and peak distances, 
the desired match (i.e. the allocation of the proper 
scattering factor to each maximum in the F map) is 
contained in n!/Fl(n~!) permutations. In case just one 
class]  has been found (heavy atoms), (2) becomes 

(n-n))!  (n-n~)!n~! 
= (4) 

I-l(nt!)/n3[ Yl(nt!) 

which is much less than n!/Fl(n~!). [Notice that the 

( n )  i.e. the number of attempts ratio (3)/(4) is exactly n~ ' 

to be performed to recognize class ]]. But if n is high 
and there is a great variety in electron densities in an 
incomplete F map (2) becomes prohibitive. Therefore, 
a more selective approach is necessary. Techniques are 
thus needed which perform a cursory inspection of the 
myriad of possible combinations so that the majority 
of sets not satisfying the search requirement will be 
rejected at an early stage. In this respect, it is useful 
to introduce the concept of ' s t ructure '  in the F map, 
relying upon known distance requirements and neigh- 
bourhood relations. We therefore introduce the formal 
concepts of set and structure in the next section. 

2.3. Sets and structures 
Definition 1. We call a set any collection of distin- 

guishable objects, which are called the elements, mem- 
bers or objects of the set. 

A set may be defined either by enumeration of its 
elements between braces or by a common property 
of its members, e.g. the set of even numbers S =  
{0, 2, 4, 6 , . . .  } = {integers n such that n = 2m}. We shall 
write s~S f o r ' s  belongs to S' .  

Definition 2. A set A is a subset of a set B if a~A 
implies a~B. 

The empty set ~ is the set with no elements. Given 
n sets Ai, i =  I . . . .  ,n, we consider the following sets: 

n 

N Ai={x[x~A~ for any i} 
i=1 (intersection A ~ n A 2 n . . .  hA,) .  

n 

U At= {xlx~Ai for at least one i} 
i=t (union A1uA2w. . . WA.). 

~I A,={(xl  . . . .  ,x,)lx,~A, for any i} 
i=  l (product set A1 x A 2 × . . . x A n )  ; 

if Ax = Az . . . .  = A, = A the product set is A". 
Definition 3. An n-ary relation between n sets A~, 

i = 1 , . . . ,  n, is a subset 0 c I~I A,. 
i = 1  
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Definition 4. A function is a binary relation 0 c A x B 
such that if (a,b)cQ and (a,c)co then b=c, and for 
any acA there is a boB such that (a,b)~o [usually writ- 
ten b =o(a)]. 

Definition 5. A structure 5~=(S,0)  is a couple con- 
stituted of a set S and a binary relation Q c S 2. 

Example 1. A molecule is a structure. In fact, let 
S be the set of atoms, then for 0 c S x  S so defined 
(a,b)cQ if and only if there exists a bond between 
atoms a and b. 

Definition 6. Given two structures ~ = ( S , Q )  and 
5a '=(S ' ,Q ' ) ,  we write 5a is a substructure of 5"' 
( ~ c c J  ') if S c S ' ,  ~ ' .  

N structures 5a/=(S/,Qi) are said to be disjoint if 
n 

N S / = ~ ;  obviously, N S / = ~  ~- t l Q / = ~ ,  but the 
i=1 

. converse is not true. 
Definition 7. We define a union of n structures 5at = 

n n 
(S~,Q/) the couple 50= ( tJ S/, tO Q/). 

/=1 i=1 
It is a straightforward exercise to show that 50 is 

a structure. A structure is said to be disconnected if 
it is the union of disjoint structures, connected if not. 

Definition 8. A function togA x B (A,B could be 
product sets) is called one-to-one if a Cb implies 
~o(a) ¢ ~o(b ). 

Definition 9. Two structures 5a = (S, 0), 5p' = (S', ~') 
are monomorphic if there is a one-to-one function 
~o c S × S' (so-called monomorphism) such that (a, b)eQ 
if and only if [rp(a), q~(b)]cff'; they are called isomorphic 
if ~0- ~ is also a one-to-one function (i.e. ~o is also onto). 

We will call automorphism any isomorphism ~0 from 
a structure 5~=(S, 4) onto itself (there is always at least 
one automorphism, the identity from S onto itself). 

A structure is called symmetric when the relation 
is symmetric, i.e. when (a,b)c~ if and only if (b,a)~. 
(Obviously, a chemical structure is symmetric.) 

As is well-known (Lynch, Harrison, Town & Ash, 
1971), a molecule may be stored in the computer as a 
structure (adjacency matrix). But, given a structure, it 
is quite difficult to distinguish such objects as cycles 
and chains. This is because they are geometrical rather 
than algebraic entities. We need therefore a geometrical 
description of a structure; such a description is usually 
called a graph. 

2.4. Graphs 
Definition 10. Given a connected structure (S, Q) and 

an ordered n-tuple (a/ , . . . ,a,)cS" (that is a/cS), we 
recognize a path of length n - 1  if (a/,a/+t)~o.. for any 
i=1 ,  n - 1 .  

It is often called a path of length n from a~ to a,. 
By definition, (a~) is a path of length 0. 

Definition l l. We define metric space as the couple 
(R, 6) where R is a set and fi c [(R x R) x N] (IR = set of 
real numbers) is a function such that:  (i) O(a,a)=O; 
(ii) ~(a,b)=~(b,a)>O; (iii) ~(a,b)+c~(b,c)>O(a,c) for 
any a,b, ccR; ~ is called a distance. 

Definition 12. Given a connected symmetric struc- 
ture (S,Q), we call a connected undirected graph the 
couple (S,6) where 6 c ( S x  S)x  R is the function so 
defined that 0 (a ,b )=min imum length of paths be- 
tween a and b for any a, b~S. 

Definition 13. Given a structure 5a and the graph 
G generated from it, we call a connected subgraph of 
G any graph G' generated from a connected substruc- 
ture 5 a ' c  5a. (We shall write G ' c  G.) 

It is straightforward to show: 
Proposition 1. A connected graph is a metric space. 
Usually no distinction is made between a structure 

and its associated graph. Consequently, both geomet- 
ric (topological and/or metric) and algebraic aspects 
are often involved in chemical structure matching. 

Definition 14. Two metric spaces (S,~), (S',O') are 
called monometric (isometric) if there exists a one-to- 
one function ~o ~ S × S '  such that ~(x,y) = ~'[tp(x), ~0(y)] 
for any x, y6S [and conversely for any x',y'6S' there 
is x, y6S such that ~'(x',y')=O(x,y) and ~o(x)=x', 
~o(y) =y'] .  

An immediate consequence of the definition of a 
graph is the following: 

Proposition 2. Two graphs are monometric (iso- 
metric) if and only if the structures they are generated 
from are monomorphic (isomorphic). 

We notice that there is always a monomorphism 
between a substructure 5 e ' ~  5a and a structure 5"; a 
subgraph G ' c G  and the graph G are thus always 
monometric. 

The last proposition is the main reason why we are 
allowed to identify graphs with structures. In fact, 
there is a one-to-one correspondence between undi- 
rected connected graphs and connected symmetric 
structures. 

One can visualize a graph (and a structure, of. 
proposition 2) in the following way: (i) draw points 
on a surface, each point representing an element s of 
the object set S of the graph; these points are called 
vertices of the graph; then (ii) draw a continuous line 
between two vertices a,b if and only if O(a ,b )= l  
[i.e. (a,b)c• which is the relation of the structure gene- 
rating the graph]; such a line is called an edge. 

Terms like path and distance (defined before) now 
become meaningful. Note that in Fig. 1 G and F are 
isometric but they are not the same graph since 
their object sets are different. 

17 10 r 

11 n 

15/ ~ 1 ~ 9  ~ i k 

14 12 13 p q 

Ca) /a) 
Fig. 1. Graphs illustrating paths and distances. (a) Graph G. 

(b) Graph F. 

A C 32A - !* 
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Other important concepts are (cf. Sutherland, 
1967): Local or node degree Q(x) of a vertex x is 
the number of edges of the graph incident with it. 
For any subset A,Q(A)=~,Q(x) represents the total 
number of edges issuing from the vertices in A, count- 
ing twice those which have both their endpoints in A. 
Gamma set of a node x is the list of nodes reachable 
from x by a path of specified length. The F ~ set of x, 
F~(x), is the list of all nodes immediately connected to 
x; the Fro(x) set is the list of all nodes connected to 
the nodes in the F m-~ set of node x. Gamma degree: 
the g a m m a = m  degree of a node x is the number of 
nodes of the g a m m a = m  set for node x. Connectivity 
of order m of a set of nodes {A} is another set of nodes 
Fro{A} representing all nodes which can be reached 
by a path of given length (i.e. traversing m bonds) 
from any one of the original nodes. The connectivity 
of a set of nodes {A} is thus the union of the gamma 
sets of all its nodes. Connectivities are calculated for 
paths until redundancies are generated. The connec- 
tivity is usually found for paths of length 1 or 2. 
Examples of a gamma set and connectivity of the 
first order are FI(1) = {2,6,9} and FX{h,f} = {d,g,j,n,q} 
in Fig. 1. Quasi-order or node order of node x is the 
number of connexions that must be traversed before 
getting back to the given x avoiding direct back- 
tracking; null order is attributed if x is not in a ring. 
In set generation (Sussenguth, 1965) the concept of 
quasi-order is used in connexion with the smallest 
rings in the structure. 

2.5. Chemical structures and Fourier graphs 
Although it is not strictly necessary to use chemical 

knowledge in crystal structure determinations (cf  su- 
perposition methods in Patterson analysis), a variety 
of methods for (partial) deconvolution of the Patterson 
function take direct advantage of this information in 
the form of the conformation of (part of) the molecule 
(Nordman & Nakatsu, 1963; Huber, 1965; Braun, 
Hornstra & Leenhouts, 1969; Hornstra, 1970; Sirota, 
Galiulin & Simonov, 1974). This paper utilizes the 
information content of the topological chemical struc- 
ture only. 

In analogy to example 1, both the chemical con- 
stitution of a molecule and the topology of an F map 
can be defined as neighbourhood relations between 
atoms and between electron density maxima, respec- 
tively; both are visualized in topical maps in terms 
of bonds and bonded neighbours, i.e. as structures. 

In the following treatment of structural diagrams 
and Fourier maps as connected and undirected graphs, 
the skeleton of the hydrogen-suppressed chemical 
structure will be called the inquiry graph G; the Fourier 
graph F denotes the (set of un-)connected graph(s) 
based on the assemblage of maxima in the electron 
density map connected by presumed bonds (derived 
from distance criteria). Apart from node values in G 
no other chemical information is included. The object 
sets in the graphs G and F are indicated by f¢ and ~-. 

As to the details of these graphs, we notice: 
(i) Stereochemical detail is not normally expressed. 

Thus, graphs differing only by the spatial relations of 
the nodes and the orientations of the branches (mo- 
lecular geometry), are equivalent, e.g. stereoisomers 
or crystallographically independent molecules. 

(ii) No positional or orientational parameters are 
expressed. The relative positions of the nodes in the 
graphs do not necessarily reflect a configuration relative 
to any preconceived coordinate or geometric system. 

(iii) In the F graph no distinct node and branch 
values are considered, as these features are absent in 
electron density maps, which are typically non-valued 
structures. Hydrogen-suppressed line-graphs of the 
tautomers (I) and (II) are the same (III): 

l N 

%0 0 

(I/ (ID (IID 

Isomers such as (IV) and (V) are no longer distinguish- 
able and not resolvable from (VI) 

~ ~ o 
U 

c , / c ,  c,¢,c/Cxc .,~ c/C~c#CXc C C C 

(IV) (V) (VI) (VII) 

on the basis of the unweighted topology of F maps, 
as their molecular skeletons (VII) are equivalent. The 
equivalence of chemically distinct but topologically 
identical representations is not restrictive in the follow- 
ing treatment. 

Finally, from consideration of the molecule (i.e. the 
valued graph G): 

F OH 

and the associated F-graph 

1 \  / 3 \  / 8  
2 4 
I I 
7 5 

\ 6 /  

we notice that they are clearly isometric, although we 
cannot decide which one of the atoms 1 and 8 cor- 
responds to F. Similarly, in 

F O 

This is because the F graph admits a non-trivial auto- 
morphism* and the information about bonds and 
atoms is entirely lost. We need therefore a more de- 
tailed description of the molecule because its 'geomet- 
rical' description is ambiguous. 

* This is shorthand for: 'the structure generating F admits 
a non-trivial automorphism'. 



JAN C. J. BART A N D  A. BUSETTI  931 

2.6. Valued structures and valued graphs 
We define a valued (V) structure as the quadruple 

(S,o,2,fl) such that: (i) (S,o) is a structure; (ii) 2cQ × A 
(where A is the set of edge-labels) is a function; (iii) 
t i c S ×  B (B is the set of point-labels) is a function. 
For example, the water molecule H - O - H  is a valued 
structure; in fact, let S be the set {1,2,3}, 0 the sym- 
metric relation {(1,2), (2, 3)} (non-ordered couples), if 
A={single bond, double bond, triple bond}, B= 
{atomic symbols}, 2=  {[(1,2), single bond],[(2, 3), single 
bond]}, fl={(1,H), (2,O), (3,H)}, then the valued 
structure (S,o,2,fl) describes unambiguously the mol- 
ecule and can easily be stored in a computer. 

Definition 15. Two valued structures 50,50' are 
called valued monomorphic (isomorphic) if (S,Q), 
(S',Q') are monomorphic (isomorphic) and A=A' ,  
B=B',  fl(s)=fl'[~o(s)] for any soS and 2[(s,r)]= 
2'[~0(s), ~0(r)] for any (s, r)cQ. That is, ~0 must preserve 
some properties of the elements of S and Q, which 
are described by edge-labelling functions ~.,2' and 
point-labelling functions fl, fl'. For instance, the two 
V structures of Fig. 1 are isomorphic as structures but 
not as V structures. Thus the concept of a valued struc- 
ture is necessary if we want our morphisms to preserve 
some chemical properties. In a similar way valued 
automorphisms can be defined. 

The usual concept of a valued graph follows imme- 
diately: 

Definition 16. Given a valued structure 50 = (S, Q, 2,fl), 
we call a valued graph the quadruple G = (S, ~, A,]~) such 
that (S,6) is the graph generated from (S,Q), fl=fl 
and ,~ is the function assigning to each path (a,b) of 
length 1 the label 2(a,b). [It would be more correct 
to state: 'assigning to each path (a~ . . . .  ,a,) a word 
2 ~ 2 . . .  2,_~ such that hi = ~.(ai, ai+ ~)', but this leads to 
the same results and makes use of concepts from 
formal languages, which have not been defined here.] 

We define valued monometries and isometrics be- 
tween valued graphs in the same way as V mono- 
morphisms and V isomorphisms. 

Obviously, two V structures may be isomorphic but 
not V isomorphic, as we have seen above. There may 
also be a function which is an isomorphism but not 
a valued one even if the V structures are V isomorphic. 
Example: 

3. Formalization of the problem 

3.1. The &terpretation of  Fourier maps 
The problem we are facing can now be formulated 

in a more precise way. There are given two V struc- 
tures 50, 50', one of which is without labelling func- 
tions. The structures are supposed to be V isomorphic 
because they are the 'same' molecule; we are interested 
in finding the unknown point-labelling functions of 
the F map, i.e. in identification (mapping) of its ver- 

tices. (It is fair to deal with V structures since chemical 
structures and F maps are stored in the computer as 
structures.) 

Since 50 and 50' are V isomorphic, they can be 
supposed to be the same V structure (and conversely). 
(In the set ~" of valued chemical structures the con- 
dition of V isomorphism is an equivalence relation 
and therefore partitions ~ in such a way that the 
members of the same class are indistinguishable from 
the chemical structural standpoint, i.e. they are con- 
formers). The solution to this problem is usually 
searched for considering only isomorphisms and not 
V isomorphisms. We have seen that this is ambiguous 
even if only true peaks are present. Suppose in fact 
that 5 ° (the V-structure) admits n automorphisms and 
m < n  V automorphisms. Since we do not know the 
labelling functions, the probability of getting an auto- 
morphism which is a non-valued one is p=(n-m) /n .  
This means that we have a probability p of error on 
the kind of atoms and/or bonds. We see that this 
probability is zero if and only if each automorphism is 
a valued one (m =n), that is if and only if information 
about the kind of atoms and bonds (peak heights and 
peak distances) is completely redundant. This is not 
often the case. It becomes then self-evident that if 
p--+ 1 (i.e. when there is little information on the 
geometrical structure as in most organic molecules) 
one must know at least partially the labelling functions 
in order to minimize the error probability. This is 
the case of heavy-atom Fourier maps or of refined 
Fourier patterns of light-atom structures when the elec- 
tron densities have taken up reliable values which 
permit distinction between, say, C and O peaks. It 
is clear then that in principle different algorithms are 
to be used as a function of the value of p: if p--+ 0 
algorithms from graph theory are useful; if this is not 
the case, hypotheses on labelling functions are highly 
desirable. From a study of the automorphism group 
of the molecule those atoms may be identified whose 
recognition would minimize p. In fact, suppose that 
only n~ isomorphisms map oxygens onto oxygens, then 
their identification in the F map and the condition 
that oxygens must be mapped onto oxygens would 
reduce p to (nl-m)/nl.  The probability of error p 
then depends obviously on the information (I) avail- 
able about the F map, which is the sum of two parts, 
structural information (in the structure) and chemical 
information (labelling functions). Since we want to 
keep p constant in the algorithm, I should be constant. 
This cannot be done considering only structural in- 
formation since the latter depends upon the number of 
isomorphisms and V isomorphisms. When spurious 
peaks are present in the F map, the probability of error 
increases because of the possibility of considering 
wrong vertices. Similarly, p increases when true elec- 
tron density maxima are missing; in fact, with n auto- 
morphisms of the structure and q automorphisms ad- 
mitted by F, there are n<n~<_nq homomorphisms 
from the F-map into the structure. 
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The general method to establish whether an F graph 
is relevant to an inquiry graph thus cannot be a simple 
one. The process which recognizes the Fourier graph 
homomorphically in the inquiry graph is satisfactory 
only in the most favourable cases, i.e. when the struc- 
ture has no automorphism other than the identity. 
Indeed, such a straightforward process mostly fails, 
especially when the F graph is incomplete. Often there 
is here even the incidental occurrence of false electron 
density maxima, leading eventually to false connexions 
between nodes. The retrieval problem is thus to locate 
an ai'bitrary subset of the chemical structure G in the 
stored F structure. 

3.2. Classification of  Fourier graphs 
In order to describe the retrieval problem in more 

detail, it is useful to classify F maps according to 
four forms of relatedness to the chemical structure: 

(1) F=G. Then G n F = G t . ) F = G  and G - F =  ~ .  In 
other words, G and F are isomorphic (cf. Fig. 1, where 
all nodes x of G are uniquely related to x' in F, so that 
F x  ~ = F x ' r  ) . 

(2) F c  G. The F graph is a subgraph of the chemical 
structure graph. Then G n F =  F, G u F =  G; G -  v = F 
is obtained by removing from G the set {v~} and re- 
lative incident edges. The set {vi} represents the atoms 
which are not resolved in F. The previous case is the 
special case of {vi}-- ~ .  

(3) FdgG. If {st} denotes a set of vertices (i.e. the 
set of spurious peaks), then the graph whose vertices 
are precisely all those vertices of F which are not in 
{s,} and whose edges are precisely all those edges of 
F with end-vertices not in {s,}, is denoted (F - s ) .  
Suppose ( F - s ) c G .  The F graph and the chemical 
structure graph have common subgraphs: the F map 
contains part of the structure, but also spurious peaks. 
Thus GegF, G n F = ( F - s ) ,  G u F = F + v = G + s  and 

= { v , } -  {s,}. 
(4) F ¢  G, ( F - s ) =  G. The chemical structure graph 

is a subgraph of the Fourier graph: G represents only 
a fragment of a chemical compound or contains ex- 
traneous vertices due to phase errors. Thus G c F ,  
a n F = a ,  G u F = F  and {o~-}-{~}={si}. 

The process of determining structural relatedness 
between the chemical formula and the Fourier map 
is then that of isolating in G and F the intersection of 
the sets G and F (GnF) .  

It would be desirable to be able to identify the type 
of F map a priori; however, this is generally not pos- 
sible. The problem obviously loses its significance once 
an efficient generalized problem-solving algorithm has 
been developed. The complexity of the combinatorial 
problem for the general case (p_~ 1) is still such that 
with contemporary equipment other, more indirect, 
automatic solutions are to be preferred. In equal-atom 
structures it is possible to increase the information 
content of the F map. Such an approach has been 
followed by Koyama & Okada (1975) for crystal struc- 
ture determinations without any human intervention 

and is based on a sequence of convergent Fourier 
calculations after repeated attempts to eliminate spu- 
rious peaks by regulating the noise level and through 
evaluation of chemical physical data (temperature fac- 
tor). Mapping may then be performed on the basis of 
a final, rather perfect and thus classified F map. As 
mentioned before, additional information on the la- 
belling functions is also available when G and Fcontain 
vertices which are easily identified, e.g. heavy atoms; 
the consequent decrease in the value of p leads to a 
simpler mapping procedure, in accordance with manual 
experience. Automatic analysis of organic compounds 
from the heavy-atom position without any chemical 
assumption has in fact been achieved by Koyama & 
Okada (1970), again by treating all light atoms as C 
atoms and using the temperature factor to distinguish 
between false and true atomic sites and peak heights 
to recognize atomic species. In this way, the combi- 
natorial problem is circumvented. 

4. Structure matching procedures 

Having formalized the problem, we must try to come 
up with practical solutions. Most experimental meth- 
ods for structure matching are based on graph theory 
and have been developed for structure information 
retrieval purposes (cf. Committee on Chemical In- 
formation, 1964-1969). Procedures for mapping V 
graphs (non-unique representations are sufficient) ob- 
viously need considerable modification to suit line 
graphs (non-valued graphs), as all characteristics ex- 
ploiting chemical properties should be removed (cf. 
Gould, Gasser & Rian, 1965). Topological substruc- 
ture comparisons are usually based on atom-by-atom 
search or more selective methods (Ray & Kirsch, 1957; 
Ballard & Neeland, 1963; Cossum, Krakiwsky & 
Lynch, 1965). An essentially iterative but efficient 
process in a simple topological matching procedure, 
developed by Gluck (1965) and subsequently modified 
by CAS (Leiter & Morgan, 1966), does not adequately 
handle topological graphs. 

Algorithms designed to match each node in the F 
map with an atomic species may start by fitting an 
atom of G to a node in F, followed by attempts to 
match some node of the respective F 1 sets, up to nodes 
in higher-order sets. A stage might eventually be reached 
at which either all nodes in the two structures are 
matched, or no further successful matches can be made, 
at which point back-tracking is necessary, eventually 
several levels, until an untried branch is found. If all 
possible branches have been tried out without success, 
a no-match condition has been found. Back-tracking 
is expensive, e.g. the time required to find a no-match 
condition between two similar structures varies as 
2", where n is the number of atoms in the smaller 
structure. Iterative node-by-node searching techniques 
usually require screening devices and short cuts to 
minimize non-productive path tracing. In case of the 
F graph, the probabibilty of finding a match may be 
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somewhat enhanced by designing a path over nodes 
with the highest electron density. Although 'educated' 
selective search has been applied to various combina- 
torial problems (Walker, 1960; Golomb & Baumert, 
1965) yielding the same answer with far fewer than 
N! trials of the brute force approach, more specialized 
techniques are frequently more efficient than the ex- 
haustive back-track. 

More powerful than node-by-node matching is set 
reduction, which makes use of various graph theor- 
etical property values: e.g. node value, node degree, 
branch value and gamma set (Unger, 1964; Penny, 
1965; Sussenguth, 1965; Figueras, 1972). The space of 
all feasible solutions is then partitioned into smaller 
subsets. The time required to determine a match/no 
match condition between two structures is estimated 
to be proportional to ( n - 1 )  2, where n is the number 
of atoms in the smaller structure. Other rapid struc- 
tural retrieval programs have been described (Feld- 
mann, Heller, Shapiro & Heller, 1972). 

In searching for suitable algorithms for matching 
the G and F structures, it was considered imperative 
to check whether existing mathematical theories offer 
any efficient solution. In a subsequent paper we will 
show that network analysis and retrieval techniques 
enable us to handle F graphs of type 1 (c f  § 4.2) by 
standardization procedures, types 2 and 4 by substruc- 
ture search and type 3 by a general partial substructure 
search procedure. 

5. Conclusions 

The framework of the algebraic solution to the inter- 
pretation of Fourier maps of organic structures has 
been traced on the basis of the topological properties 
of the chemical graph, along the lines previously ex- 
pressed by Bart & Giordano (1973) and Koch (1974). 
Without the introduction of neighbourhood relations 
(structure) the combinatorial problem of Fourier ana- 
lysis is typically an explosive problem, which is even- 
tually considerably reduced in size in cases where par- 
ticular atomic species can somehow be recognized (cf. 
Koyama & Okada, 1970). In other cases, simplifica- 
tion may be achieved by the introduction of structure- 
oriented mathematics. The results of network analysis 
and retrieval techniques in combinatorial computa- 
tions are responsible for the development presented 
here. Due to the low information content of Fourier 
structures, highly selective structure matching stra- 
tegies are required to amplify human logical capacity 
in this field. 

One of us (A. B.) is indebted to the Italian Acca- 
demia dei Lincei and Sperry Rand for a research fel- 
lowship. 
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